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Summary & Conclusions - The SURE computer program is 
a reliability-analysis tool for ultrareliable computer-system architec- 
tures. SURE is based on computational methods developed at the 
NASA Langley Research Center. These methods provide an e%- 
cient means for computing reasonably accurate upper and lower 
bounds for the death state probabilities of a large class of semi- 
Markov models. Once a semi-Markov model is described using a 
simple input language, SURE automatically computes the upper 
and lower bounds on the probability of system failure. A parameter 
of the model can be specified as a variable over a range of values, 
thus directing SURE to perform a sensitivity analysis automatically. 
This feature, along with the speed of the program, makes it an 
especially useful design tool. 

SURE is a flexible, user-friendly reliability-analysis tool. The 
program provides a rapid computational capability for semi- 
Markov models useful for describing the fault-handling behavior 
of fault-tolerant computer systems. The only modeling restriction 
imposed by the program is that the non-exponential recovery tran- 
sitions must be fast in comparison to the mission time - a desirable 
attribute of all fault-tolerant systems. The SURE reliability-analysis 
method uses a fast bounding theorem based on means and 
variances; the method yields upper and lower bounds on the prob- 
ability of system failure. The upper and lower bounds are typieal- 
ly within 5 percent of each other. Techniques have been developed 
to enable SURE to solve models with loops and calculate the 
operational-state probabilities. The computation is extremely fast, 
and large statespaces can be directly solved; a pruning technique 
enables SURE to process extremely large models. 

1. INTRODUCTION 

The SURE computer program is a general purpose reliabili- 
ty analysis tool especially useful for the analysis of fault-tolerant 
digital computer systems. The first version of the program was 
developed in 1983. Over the past 7 years the capabilities of the 
program have been increased to handle larger and more com- 
plex systems. This paper overviews SURE with an emphasis 
on its solution techniques. 

SURE was developed in response to the growing size and 
complexity of fault-tolerant digital systems and the resulting in- 
tractable reliability analysis. Because of the importance of the 
reliability analysis of these systems, many mathematical ap- 

proaches have been developed during the 1980s to deal with 
these systems. Many of these approaches have been incorporated 
into automated reliability-analysis tools. Some of the most wide- 
ly known are CARE 111 [l], HARP [2], SHARPE [3], SURF 
[4], and AFUES [ 5 ] .  Johnson & Malek [6] surveyed many of 
these tools. 

SURE consists of about 4000 lines of Pascal code. It runs 
on VMS and Unix operating systems. It is now distributed by 
COSMIC, the US Government software distribution center. The 
source files can be purchased from COSMIC by calling 
404-542-3265. The COSMIC code-number for SURE is 

SURE is based on a mathematical theorem developed by 
White [7, 81 which provides a method for computing the 
reliability of a fault-tolerant system. Two characteristics of a 
fault-tolerant system have traditionally made this task difficult. 

The use of sophisticated reconfiguration strategies has resulted 
in complex models. 
System recovery is many orders of magnitude faster than the 
fault-arrival process. This causes rapid growth in the error 

U 

The mathematical theorem for SURE solves both of these prob- 
lems for systems with slow fault-arrival processes and fast 
system-recovery (viz, a well-designed fault-tolerant system). 
The theorem establishes that just the means and variances of 
the recovery times are sufficient information about the recon- 
figuration process in order to obtain tight bounds on the prob- 
ability of system failure. The bounds consist of an algebraic 
factor using the means and variances of the system recovery 
times and a factor that is the solution of a numerically stable 
differential equation whose coefficients are the slow fault- 
occurrence rates. The differential equation is tractable enough 
that for a many cases its solution has easy algebraic upper and 
lower bounds. (SURE automatically selects the appropriate 
method and informs the user when the differential-equation op- 
tion is used.) Thus, the bounding theorem reduces the tradi- 
tionally difficult problem to easily computed mathematics. 

Unlike the other tools developed under NASA Langley 
sponsorship (CARE 111 and HARP), SURE does not use 
behavioral decomposition to gain computational efficiency. In- 
stead, the mathematical bounding theorem provides upper and 
lower bounds on system probability of failure in terms of an 
easily computed algebraic formula. The use of strict mathe- 
matical bounds avoids some of the problems associated with 
approximations used in earlier tools [9, 101. The program does 
not use a separate fuult-handling model to deal with system 
reconfiguration. Since the mathematical theorem encompasses 
the class of semi-Markov models, a complex reconfiguration 
process can be captured in one general recovery transition. Both 
CARE III and HARP are based upon a criticul-pair approach 
wherein 2 coincident faults cause system failure. However, 
SURE can solve models where three or more faults must be 
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present before system failure occurs. In fact, SURE is not 
limited to any particular modeling philosophy or graphical struc- 
ture. The upper and lower bounds produced by SURE will be 
close as long as the non-exponential (recovery) transitions are 
fast compared with the exponential (failure) transitions. The 
primary limitation of SURE is that slow transitions must be ex- 
ponentially distributed. Thus, systems having non-exponential 
failure characteristics can not be directly analyzed. However, 
globally timedependent failure behavior (nonhomogeneous) can 
be analyzed using piece-wise linear upper and lower bounds 
on the globally time-dependent failure distribution [2 1 J . This 
technique is appreciably slower than the usual solution tech- 
niques because it requires a manual iterative analysis of the 
model over a sequence of steps. 

Section 2 overviews the techniques to develop a semi- 
Markov model of a fault-tolerant computer system. Section 3 
presents the basic mathematics of SURE. Section 4 describes 
the SURE user-interface, with a sample interactive session. Sec- 
tion 5 gives the basis for the model-pruning capability. Section 
6 justifies the SURE loop-truncation method. Section 7 describes 
some miscellaneous additional features. 

Notation 

1. Greek letters represent the rates of exponential transi- 
tions and Roman letters represent the Cdfs  of the fast recovery 
transitions. 

2. Standard notation is given in ‘ ‘Information for Readers 
& Authors” at the rear of each issue. 

not necessarily constant. Some tools have provided detailed 
multi-step fault-handling models to capture this non-exponential 
behavior [ 1, 141. Since SURE solves semi-Markov models, the 
reconfiguration process can be modeled directly with one 
general recovery transition. Furthermore, since the mathe- 
matical bounds depend only upon the means and standard devia- 
tions of the recovery transitions, distribution fitting is un- 
necessary. Given an empirical distribution of system recovery 
times, the easily calculated sample means and standard devia- 
tions can be used directly. 

2.2 Example 1 

Figure 1 shows a semi-Markov model of 3 processors with 
1 spare. 

Assumptions & Notation 

1. The outputs of the processors use 3-way voting to mask 

2. The spare does not fail while inactive (cold standby). 
3. Processor fault arrivals occur with constant transition- 

4. Recovery #1 is by replacing the faulty processor with 

5 .  Recovery #2 is by degrading to a simplex processor. 
6.  The recovery #1 & #2 processes are different. The Cdf s 

faults. 

rate, A. 

a spare. 

of recovery-time are Fl ( t )  and F2 ( t ) .  

2. RELIABILITY MODELING OF 
FAULT-TOLERANT COMPUTER ARCHITECTURES 

2.1 Modeling the State Transitions 

Highly reliable systems use parallel redundancy to achieve 
their fault tolerance since current manufacturing techniques can- 
not produce circuitry with adequate reliability. Redundant pro- 
cessing and voting are used to mask the errors produced by a 
failed component. Reconfiguration can increase the reliability 
of the system without the overhead of even more redundancy. 
Reconfigurable systems exhibit behavior that involves both slow 
and fast processes, and, when modeled stochastically, some state 
transitions are many orders of magnitude faster than others. The 
slower transitions correspond to fault arrivals in the system. 
The faster transition rates correspond to system recovery from 
faults. 

If the system states are delineated appropriately, the slow 
transitions can be obtained from field data and/or by using Mil- 
Hdbk-2 17 [ l l]. The transition rates are usually assumed to be 
reasonably constant (exponential distribution of life) during the 
useful lifetime for many electronic devices [ 121. The system 
recovery processes can be measured experimentally using fault 
injection. In a pure Markov model, the recovery process is 
typically represented as one constant-rate transition. However, 
experiments on the Fault-Tolerant Multiprocessor computer ar- 
chitecture have demonstrated [ 131 that these transition rates are 

Figure 1. Semi-Markov Model of a Triad with One Spare 

The horizontal transitions represent fault arrivals. The coeffi- 
cients of X represent the number of processors in the configura- 
tion that can fail. The vertical transitions represent recovery 
from a fault. Since the system uses 3-way voting for fault mask- 
ing, there is a race between the occurrence of fault #2 and the 
removal of fault #l .  If fault #2 wins the race, then the system 
fails (state 3). 

The input language to SURE is very simple. The input 
model is defined by listing all of the transitions of the model. 
This model is defined as: 
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IdentiJiers 3.1 Path-Step Classi$cation & Notation 

1. LAMBDA = 1E-4; (* Failure rate of a processor *) 
2. MU1 = 2.7E-4; (* Mean time to replace faulty pro- 

3. SIGMAl = 1.4E-4; (* Standard deviation of time to 

4. MU2 = 9.2E-4; (* Mean time to degrade to a 

5. SIGMA2 = 3.8E-4 (* Standard deviation of time to 

cessor w/ a spare *) 

replace w/ a spare *) 

simplex *) 

degrade to simplex *) 

Transition Statements 

1,2 = 3*LAMBDA; 
2,3 = 2*LAMBDA; 
2,4 = <MUl,SIGMAl>; 
43 = 3*LAMBDA; 
5,6 = 2*LAMBDA; 
5,7 = <MU2,SIGMA2>; 
7,8 = LAMBDA; 

The first 5 statements equate values to identifiers (symbolic 
names). Identifier #1, LAMBDA represents the processor 
failure rate. Identifiers #2 & #3, MU1 & SIGMAl are the mean 
and standard deviation of the time to replace a faulty processor 
with a spare. Identifiers #4 & #5, MU2 & SIGMA2 are the mean 
and standard deviation of the time to degrade to a simplex. Con- 
veniently, the only information SURE needs about the non- 
exponential recovery processes are the means and standard 
deviations. The final 7 statements define the transitions of the 
model. If the transition is a slow fault-arrival then only the 
exponential rate need be provided. For example, the last state- 
ment defines a transition from state 7 to state 8 with rate LAMB- 
DA. If the transition is a fast recovery then the mean and 
standard deviation of the recovery time must be given. For 
example, the statement: 2,4 = <MUl,SIGMAl> defines a 
transition from state 2 to state 4 with mean recovery time, MU1 
and standard deviation SIGMAl . 

2.3 General Modeling 

The theorem provides bounds on the death-state prob- 
abilities at a specified time. It assumes that the system is in- 
itially in a single state - the start-state. (The generalization to 
multiples states is in section 6.1 .) SURE finds every path from 
the start-state to a death-state. Each path’s contribution to system 
failure is calculated separately using the White semi-Markov 
bounding theorem. 

Let each state along the path be put into 1 of 3 classes which 
are distinguished by the type of transitions leaving the state. 
A state and all the transitions leaving it is apath-step. The tran- 
sition on the path being analyzed is the on-path transition. In 
the figures in this section, the on-path transition is always the 
horizontal transition. (This is different from figure 1 where the 
horizontal transitions were fault arrivals and vertical transitions 
were recoveries.) The remaining transitions are of-puth tran- 
sitions. The classification is made on the basis of whether the 
on-path and off-path transitions are slow (and hence with 
constant transition rate) or fast. If there are no off-path transi- 
tions, the path-step is classified as if it contained a slow off- 
path transition. Thus, the following classes of path-steps are 
of interest. 

Class-1: Slow On-Path, Slow Off-Path 

I 
Figure 2. Class 1: Slow On-Path, Slow Off-Path 

Notation 

Xi on-path constant transition-rate 
yi sum of slow off-path transition rates 0 

If all transitions leaving the state are slow, then the path- 
The development of a reliability model of a complex system 

uses the same concepts used in the development of the model 
in section 2.2. The two types of transitions (failure and recovery) 
are still used, but there often are many ws of failure and dif- 

failure transitions from a state, each representing a failure of 
a different part Of the System. Likewise, some States are reached 
after a sequence of different failures, and there are multiple 
recoveries from the state. Notation 

step is class-1 . There can be an arbitrary number of slow off- 
path transitions. If any of the off-path transitions are not slow, 
then the path-step is class-3. The path-steps 1 - 2 , 4  - 5 and 
5 - 6 in the triad-plus-l-spare model of figure 1 are examples. 

U ferent recoveries for each type. Therefore, there can be several 

Class-2: Fast On-Path, Arbitrary Off-path 

f i  sum of all slow off-path transition rates 

3. THE FUNDAMENTAL SURE MATHEMATICS Fi,k Cdf of fast transition k from state i 

If the on-path transition is fast then the path-step is class 
2; see figure 3. There can be an arbitrary number of slow or 
fast off-path transitions. As before, the off-path slow, constant- 
rate transitions can be represented as a single transition with 

This section presents the White semi-Markov bounding 
theorem upon which SURE is based. Some notation is 
developed; then the details of the theorem are presented. 
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Class-3: Slow On-Path, Fast Off-Path n 

Figure 3. Class 2: Fast On-path, Arbitrary Off-Path 

a rate ci equal to the sum of all the slow off-path transition 
rates. The path-step 2 - 4 in the triad-plus-1-spare model of 
figure 1 are examples. The distribution of the fast on-path tran- 
sition is Fi,l. The Cdf of time for fast transition k from state 
i is Fi,k. Three measurable parameters must be specified for 
each fast transition (given that this transition occurs): 

~i~~~~ 4. class 3: slow on-path, Fast off-path 

Notation 

ai slow on-path transition rate 
P; 
Gj,k 

sum of the slow off-path transition rates 
Cdf of fast off-path transition-time from state j to state transition probability, p (F$) 

conditional mean, p ( Fck) 

conditional implies the condition, “Given that the transition oc- 
curs.” 

These population parameters are measured by the - 

sample fraction of times that a fast transition is successful, 
mean of the sample that is conditional on the transition’s 

variance of the sample that is conditional on the transition’s 

In any experiment where competing processes are studied, the 
observed empirical distributions are conditional on the transi- 
tion’s occurring. The time it takes a system to transit to the next 
state is observed only when that transition occurs. The asterisk 
denotes that the parameters are defined in terms of the condi- 
tional distributions. These expressions are defined independently 
of the “exponential” transitions ej. Consequently, the sum of 
the fast-transition probabilities Ci,k p (ck) = 1. In particular, 
if there is only one fast transition, its probability is 1 and the 
conditional population-mean is equivalent to the unconditional 
population-mean. (The SURE user does not have to deal ex- 
plicitly with the unconditional distributions Fi,k However, in 
order to develop the mathematical theory, they must be used.)O 

occurring, 

occurring. 

k 
Hj Cdf of recovery holding time in state j 0 

The on-path transition must be slow in order for a path- 
step to be categorized as class-3. There can be both slow and 
fast off-path transitions, but at least one off-path transition must 
be fast; see figure 4. The path-step 2 - 3 in the triad- 
plus-1-spare model of figure 1 are in this class. As in class-2, 
the transition probability p ( Gjfk),  the conditional mean 
p ( Gjfk), and the conditional variance U’ ( q k )  must be given 
for each fast off-path transition. There really is no difference 
between transitions labeled with the letters F and G.  The dif- 
ferent letters are used to help keep track of the context, viz, 
whether the transition is class-2 (labeled F) or class-3 (labeled 
G) in the current path. In either case, the SURE user supplies 
the conditional mean, the conditional standard deviation, and 
the transition probability. 

Although, these 3 parameters suffice to specify a class-3 
path-step to SURE, the mathematical theory is more easily ex- 
pressed in terms of the holding time in the state, viz, time the 
system remains in the state before it transits to some other state. 
The bounding theorem is expressed using a slightly different 
form of holding time which, to prevent confusion, is referred 
to as recovery hoMing time, viz, holding time in the state with 
the slow exponential distributions removed from the state. Since 
the slow exponential transition rates are many orders of 
magnitude smaller than the fast transition rates, the recovery 
holding time is approximately equal to the holding time in the 
state. The following Cdf and parameters are used in the theorem: 
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~ ’ ( 4 )  = 2.  t . g ( t ) d t  - p ’ ( H , ) .  j: 
These 2 parameters are the mean and variance of the holding 
time in statej without consideration to the slow exponential tran- 
sitions (viz, with the slow exponential transitions removed). 
These 2 parameters do not have to be supplied to SURE; SURE 
derives them from the other inputs - p(Gjfk) ,  p(Gjfk) ,  
u2”(Gjfk) [these3parametersaredefmedexactlythesameway 
as the class-2 path-step parameters] - as follows: 

for T - A  > 0, for all ri > 0, for all sj > 0, 

A 

q 3 p ( 4 )  - [‘/2.(aj+pj) + ( l / s j ) l . w 2 ( ~ )  

zi = 1 - E ~ . ~ ( F ~ * )  - w2(Fi’)/ri2 

ri + Sj, 
i = l  j= 1 

w’ ( z )  = p’ ( z )  + U’ (z) , mean-square deviation for z 

Q ( x )  = Pr{traversing a path consisting of only the class-1 

path-steps within time x } .  0 1 u’(H,) = [ 2 p(qk)*[u’(G;k)  + p’(G’k)l 
k =  1 

- p 2 ( H , ) .  Proof: See [7, 151. 

the fast distributions are specified without con- Different choices of these parameters lead to different bounds; 
sidering the competing slow exponential transitions, the theorem 
gives bounds that are correct in the presence of such exponen- 
tial transitions. The parameters are defined in this manner to 
simplify the process of specifying a model. Throughout the 
paper, the holding time in a state in which the slow transitions 
have been removed from the state is referred to as recovery 
holding time. 

For convenience, when referring to a specific path in the 
model, the Cdf of an on-path fast transition is indicated by a 
single subscript which specifies the source state. For example, 

can be referred to as 4. 

sum uses: 

.,” = 2.  T .  w z  ( ~ ~ 7 ,  

s; = T .  J (H,) / p  ( H , ) ,  

which give very close (very near optimal) bounds in practice 
[151. 

algebraic approx~mat~ons for Q (  T )  are [16]: T~~ 

if the transition with Cdf 4 . k  is the on-path transition, then it k 

Q ( T )  < Q , ( T )  = n A,*T /k! L1 ) 
Notation 

4 . k  fast transition k from statej k 

Q ( T )  > Qr(T) = Q u ( T ) * [ 1  - wk/(k+1)1 

4 on-path fast transition from statej 0 wk = (A, + yl) . T, mean total time in class-1 transitions 

3.2 SURE Bounding lheorem 

Notation 

T mission time 
k number of class-1 path-steps 
m number of class-2 path-steps 
n number of class-3 path-steps 0 

Theorem: The probability D ( T )  of entering a particular death- 
state within the mission time T, following a path with k class-1 
path-steps, m class-2 path-steps, and n class-3 path-steps, is 
bounded as follows: 

LB < D ( T )  < UB, 

i =  1 

Both Q,(T)  & Q l ( T )  are close to Q ( T )  as long as wk Q 1, 
viz, mission time is short compared to the average 
component-lifetime. 

SURE uses the following slightly improved upper bound on 
Q ( T ) :  

‘ i E S  ’ 
3 {iJAi.T < l}. 

QZ( T )  is obtained by removing all the fast exponential transi- 
tions from Q, ( T) .  Since the path is shorter, the probability of 
reaching the death-state is larger than for Qu( T )  model. QZ( T )  
& Ql(  T )  are used for the QTCALC=O option. For the 
QTCALC = 1 option, a differential-equation-solver calculates 
Q (  T)  & Q (  T - A ) .  For the QTCALC=2 default option, SURE 
automatically selects the most appropriate method. 
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3.3 Tightness of the SURE Bounds The following relationship exists between these models: 

P9(T) 5 P3,(T). 
This section informally shows why the SURE bounds are 

typically very close; it does that by presenting an intuitive for- 
mula for the relative difference between the bounds. SURE in 
no way depends on the arguments of this section, and the user 
need only look at the output of a run to see if the bounds are 
close for a particular problem. The relative difference between 

Notation 

Pk( T )  0 

Thus, the probability of reaching the new death-state 3,  is an 

probability of reaching death-state k in time T 

UB & LBjs: 

(UB - LB)/(UB) = [l 

upper bound on the probability of reaching state 9. SURE uses 
this strategy to prune long paths. However, SURE adds the 
prune-state probability to the upper bound so that a conservative 
answer is guaranteed. The prune-state probability is not added 
to the lower bound. 

SURE uses a prune-level probability to determine which 
paths are pruned. As SURE traverses a path, it calculates the 
upper bound. If this upper bound falls below the prune-level 

- Q ( T - A ) / Q ( T ) l .  [ fi &] 
i =  1 

q & Zi are defined in section 3.2. 

10 - 4/hour and thus Q 1 / T; the 
order of 
Zi = 1 .  Thus, 

probability, then the program prunes the rest of the path. There 
are two different ways to specify the prune-level probability - 
automatic and manual. The manual method requires the user 
to specify the prune-level probability with the PRUNE com- 
mand, eg, PRUNE = 1E- 12. This is illustrated in the session 
shown in figure 5. 

The fault arrival rates fi, aj, pj are on the order of 
(Hi) & U ( Hj)  are on the 

hour and thus Q T. Thus, q / p ( H j )  1 and 

(UB-LB)/UB 1 - Q ( T - A ) / Q ( T )  = 1 - (1 - A / n k  
i o - '  in-* 5: k.A/T, for A 4 T. 0 l".'!G< IO' ' 

For recovery times on the order of 10 -4  hours, the ri & sj are 
on the order of hours. Using fairly large values of A and 

BuIs 

k for T = 10 hours, viz, A = 0.1 hours and k = 5: SURE V7.5 

17 read prune-ex 

2: 1.9  1.-4: 
3 :  2.3 - 10-5 ;  
4 :  2 .6 * 10-4 ;  
5:  3 .4  10-4; 
6 :  4 . 5  - le-5; 
7 :  8 :  11.t.2; 

NASA Langley Research Center 

(UB-LB)/UB = k.A/T = 5.(0.1 hours)/(lOhours) = 5 % .  

For smaller values of k and A, the relative error is obviously 
smaller, and as the failure rates or the recovery times decrease, 

l o l  97 prun. run 

:i':LP'U"* ~:~~~~~~~~~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~  

- 6.-11; 

the bounds tighten. From this we can see that the SURE bounds DEITHSTAW LOYERBOUNo UPPERBOUND COnnEWTS RUN 11 

are tight for systems with slow fault arrivals and fast recoveries. 6 4.936500-07 5.000008-07 
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ - - _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

These are precisely the characteristics of a well-designed fault- 
tolerant system. 1 PATH(S) TO DEATH STATES, 1 PATH(S) PRUNED AT LEVEL 6.00000~-11 

Figure 5. SURE Session Illustrating Pruning 

4. PRUNING 

The death-state 5 is never reached. SURE prunes this path 

The system probability is obtained by adding all of the death- 
state contributions including the sure prune state. The automatic 
method leaves the setting of the prune level up to SURE. The 
program selects a prune level based on the probability of the 
first death-state it encounters. As more death-states are en- 
countered, the program updates the value of PRUNE; it is up- 

Although SURE can solve models with very many states, 
additional computational power is available by way of its prun- and adds its prune probability to the state labeled Sure prune- 
ing capability. The concept is simple. 

Example 2 

The following path is in a model: 

ct dated after loo, lo', lo2, ... death-states are reached. 
1 :G .s -o---- - 0 Y 

Truncating the path at state 3 gives: 5. SOLVING MODELS WITH LOOPS 

0 0 .  Although the White bounding theorem deals only with 
paths that do not contain a loop, SURE uses a strategy based 
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upon pruning to solve models with loops. The difficulty with 
a model containing loops (its graph structure contains a circuit) 

in figure 6. 

0 a .+ .@-L.+@ 

is that there are an infinite number of paths. Consider the model + 

Figure 6. Model With A Loop 

Unfolding the loop produces an infinite sequence of paths Figure 8. Reduction to a Finite Set of Paths 
as shown in figure 7. 

@L@L@L@ 

+ 
c 

+ + 

+ 
Figure 9. Model After Pruning and Reduction 

Figure 7. Infinite Sequence Of Paths 6. OTHER SURE FEATURES 

6.1 Solving Models with Distributed Initial-State Probabilities 
However, the situation is not intractable because the 

resulting sequence consists of increasingly longer paths. The 
death-state probabilities of the paths decrease rapidly like a 
Taylor's series. A typical sequence of probabilities is: 

Suppose that we need to solve a model whose initial state 
is not exactly d&x-"l. For 

Pr{system is in state 1 at time 0} = 0.5, 
io -6 ,  io - lo, 10 - 14, io - 18, io -22, . . . 

Pr{system is in state 2 at time 0} = 0.3, 
The series can be truncated at a point where the sum of all of 
the subsequent probabilities becomes negligible. SURE ac- 
complishes this by a technique that enables a calculation of an 

Pr{system is in state 1 at time 0} = 0.2. 

upper and lower bound on the truncation error. The technique 
is based on the fact that a model with a loop is equivalent to 
a finite sequence of paths where only the last path in the se- 
quence contains a loop. For example, the model of figure 6 can 
be reduced to the 3 paths shown in figure 8. The probability 
of entering the death-state of the original path is the s u m  of the 
probabilities of entering the death-state of the 3 new paths. 

If the third path is pruned before the loop, then an upper 
bound can be obtained. Consequently, the sum of the 3 paths 
in figure 9 provides an upper bound on the original model of 
figure 6. Thus, a finite unfolding of a loop in conjunction with 

SURE solves this model by the following strategy. The model 
is solved 3 times - first with state 1 as the start-state, then with 
state 2 as the start-state, and finally with the state 3 as the start- 
state. Each of these sub-results is multiplied by its start-state 
initial probability, then the resulting values are added together. 

The SURE input language contains an I N I T I A L 2  state- 
ment for initializing states. For example, INITIAL_P(l: 0.3, 
2: 0.7); assigns an initial probability of 0.3 to state 1 and an 
initial probability of 0.7 to state 2. The user can specify upper 
and lower bounds on the initial state probabilities: 

pruning can solve a model with loops. This is brecisely the 
technique implemented in SURE. INITIALJ(1:  (0.27,0.31), 2: (0.69,0.71));. 
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6.2 Operational State Probabilities 
,,,/ STEM I 
/- 

Figure 10. Submodel To Illustrate How SURE Calculates 
Operational State Probabilities 

1Y 

Figure 11. Reduced Submodel 

SURE can bound the operational state probabilities. The 
following method is used by the program. Given the submodel 
shown in figure 10, the program first calculates the death-state 
probabilities: P8 ( T )  & P9( T).  Next, the program solves the 
reduced model in figure 1 1 ,  obtaining P7 ( 2"). The probabili- 
ty of being in the operational state 7 in the original model is: 

Although this might seem laborious, it is efficiently implemented 
in SURE. All of the basic probabilities are calculated while 
SURE is traversing the graph of the model. Since the bounds 
are algebraic, the calculations are not costly. The subtractions 
are performed as SURE backs out of the recursions after 
reaching a death-state. The calculations are performed using 
bounds rather than exact probabilities. The bounds on the opera- 
tional states are not as close as the bounds on the death-states, 
but are usually close enough to be useful (eg, for solving a se- 
quence of semi-Markov models used for phased missions). The 
closer a state is to a death-state, the closer the bounds are. 

6.3 m e  ASSIST Front-End and Related Programs 

SURE is part of a reliability analysis workstation as il- 
lustrated in figure 12. This workstation concept is centered 
around the model-generation program, ASSIST (Abstract Semi- 
Markov Specification Interface to the SURE Tool). ASSIST pro- 
cesses a set of rules (A l )  that describe the construction of a 
model and then automatically generates the transitions of the 
model in the SURE input language ( S l )  . This language is over- 
viewed in [17]; [18] describes this program in detail. Two ad- 
ditional programs, STEM & PAWS, have been developed as 
part of this workstation. These programs solve pure Markov 
models. They accept models in exactly the same input language 
as SURE, but solve the model using classical numerical tech- 
niques. PAWS uses Phde approximation with scaling, a tech- 
nique developed by Ward [19]. STEM uses a Taylor's series 
technique. Both programs are described in detail in [20]. 

n PAWS 

Figure 12. NASA Langley Reliability Analysis Workstation 
Concept 

6.4 Computation Time of SURE 
SURE has been distributed to over 60 industrial/academic 

sites and has been used on a wide range of problems. The com- 
putation time of the program varies appreciably with the struc- 
ture and nature of the model. Complex systems requiring 105's 
of states have been solved. Nevertheless, some lo4 state 
models require more execution time than some io5 state 
models. Table 1 provide an approximate view of the perfor- 
mance of SURE. 

Table 1 
SURE Execution Times for a Multiple-Triad System 

Transitions Execution Time Triads States 

1 3 2 0.001 
2 8 8 0.05 
5 112 160 0.57 
8 1280 2048 6.82 

10 6144 10240 28.2 
12 28672 49152 164 
13 61440 106496 335 

The first 3 columns give the number of items specified. 
Execution times are in sec. 

The models in table 1 describe systems of N-triads, vary- 
ing N from 1 to 13. The models were generated using ASSIST 
and were solved using SURE V7.8 on a Sun Sparcstation 1 + 
with 24MB of RAM. 

It is sometimes necessary to use a user-specified level of 
pruning to get good performance. Table 2 shows the potential 
benefit of such pruning. The execution times were obtained by 
solving a model of a triad with N warm spares, varying N from 
1 to 200. 

There are wide variations in SURE execution times 
depending upon the structure of the model and an effective 
choice of the prune level. In general, the performance of SURE 
is related more to the number of paths that must be traversed 
and their lengths rather than to the number of states. 
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Table 2 
SURE Execution Times For Triad With Warm Spares 

_ _ _ ~ ~  

Spares States Transitions 

~ 

Execution Time 
(auto-prune) 

Execution Time 
(user-specified) 

1 
5 

10 
15 
20 
50 

100 
200 

11 
65 

200 
410 
695 

3980 
15455 
60905 

12 
104 
354 
754 

1304 
7754 

30504 
121004 

0.06 
0.77 

35.8 
495 

3595 

~ 

0.06 
0.40 
0.79 
1.75 
3 .OO 

18.31 
70.1 

294.8 

The first 3 columns give the number of items specified. 
Execution times are in sec. 
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Change: To a Quarterly 

Effective with the 1992 March issue, this Transactions has 
returned to a quarterly publication. In 1973, this Transactions 
changed from a quarterly to 5 issues per year for two reasons: 
1) it improved the net income for the Transactions, and 2) it 

ceedings of the Annual Reliability & Maintainability Symposium, 
to be sent to our full members. Neither of those situations is 
now the same; thus the publication schedule is returning to 
quarterly. The budgeted, annual number of pages is staying the 

provided a space (February) for another publication, Pro- same. 4 T R b  
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